1.Miller-rabin算法:
Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法。
根据费马小定理,如果p是素数,则a^(p-1)≡1(mod p)对所有的a∈[1,n-1]成立。所以如果在[1,n-1]中随机取出一个a,发现不满足费马小定理,则证明n必为合数。
【但是每次尝试过程中还做了一个优化操作,以提高用少量的a检测出p不是素数的概率。这个优化叫做二次探测。它是根据这个定理:如果p是一个素数,那么对于x(0<x<p),若x^2%p=1,则x=1或p-1。】
为了计算a^(n-1)mod n,我们把n-1分解为x* 2^t的形式,其中t>=1且x是奇数;因此,a^(n-1)≡(a^x)^(2^t)(mod n),所以可以通过先计算a^x mod n,然后对结果连续平方t次来计算a^(n-1) mod n。一旦发现某次平方后mod n等于1了,那么说明符合了二次探测定理的逆否命题使用条件,立即检查x是否等于1或n-1,如果不等于1也不等于n-1则可直接判定p为合数。
2.pollard-rho算法:
这是一个用来快速对整数进行质因数分解的算法,需要与Miller-rabin共同使用。
算法原理:
1.通过某种方法得到两个整数a和b,而待分解的大整数为n。
2.计算p=gcd(a-b,n),直到p不为1(就是a-b与n不是互质),或者a,b出现循环为止。
3.然后再判断p=n?
4.如果p=n,那么返回n是一个质数。
5.否则返回p是n的一个因子,那么我们又可以递归的计算Pollard(p)和Pollard(n/p),这样,我们就可以求出n的所有质因子。
算法步骤:选取一个小的随机数x1,迭代生成x[i] = x[i-1]^2+c,一般取c=1,若序列出现循环则退出,计算p=gcd(x[i-1]-x[i],n),若p=1则返回上一步继续迭代,否则跳出迭代过程。若p=n,则n为素数,否则p为n的一个约数,并递归分解p和n/p。
【小知识】:随机数生成
C++中函数srand(),可以指定不同的数(无符号整数变元)为种子。但是如果种子相同,伪随机数列也相同。
比较理想的是用变化的数,比如时间来作为随机数生成器的种子。 time的值每时每刻都不同,即种子不同,所以,产生的随机数也不同。
用法什么的想深入了解自己去搜吧,这里只要明白下面的程序中随机数是这样产生的就行了。然后,在这里再举个小栗子以加深一下对它的理解:
1 |
|
学了这么多是不是手痒了?别着急,点我有惊喜。
AC代码(C++【因为涉及到ctime,所以G++会RE的】):
1 | /* ************************************************* |